CUP4SOIL High-resolution product presentation and data access

<u>Uta Heiden</u>¹, Pablo d'Angelo¹, <u>Laura Poggio</u>², Paul Karlshöfer¹, Fenny van Egmond², Thaïsa van der Woude² ¹ DLR ² ISRIC

ESA SYMPOSIUM ON EARTH OBSERVATION FOR SOIL PROTECTION AND RESTORATION 07.02.2024

Knowledge for Tomorrow

Introduction CUP4SOIL general objective

<u>Objectives</u>

- Prepare a potential Copernicus downstream service to support national and European agencies for reporting on soil health/quality.
- Generate European-wide <u>example</u> data products characterising soil health/quality
- Develop a user community that tests and validates data products for soil health/quality information
- Ensure close cooperation with the ESA WorldSoils project activities and other related projects/initiatives such as the EJP SOIL projects and others etc. ...

- Current possibility of EO-based soil parameter
- Deviations from user requirements
- Data package to "play around"
- Develop show cases

Introduction

CUP4SOIL and WorldSoils

	WorldSoils (ESA)	CUP4SOIL (EU - FPCUP)
Lead	GMV	DLR
Main objective	Development of a pre-operational system for SOC monitoring	Prepare future soil products within the Copernicus Land Monitoring Service (CLMS)
Soil parameter	SOC content	SOC content pH, bulk density, nitrogen, texture, coarse fragments, (maybe more)
Soil prediction model	Spectral soil mapping (bare soil) Digital soil mapping (vegetated areas) -> Including SCMaP products	Digital soil mapping (all areas) -> Including SCMaP products
Spatial resolution	50 m (Europe) 100 m (Global)	20 m (Europe)
Spatial coverage	Europe	Europe +
Sentinel-2 L2A input data	Sen2Cor	MAJA

Methodology General overview

- All Sentinel—2 images in L2A format -> processed with MAJA from 2018 2022
- Larger Europe including Ukraine
- Spectral Index based (e.g. Diek et al. 2017, Rogge et al. 2018, Demattê et al., 2018)
- Used index: PV+IR2 (Heiden et al. 2022, Möller, M. et al. 2022, Dvorakova, K., et al., 2023)

$$PV+IR2 = \frac{B8 - B4}{B8 + B4} + \frac{B8 - B12}{B8 + B12}$$

- Regionalised thresholds (Karlshöfer et al., in preparation)
- 5-years composite products

Methodology General overview

Methodology

Digital Soil Mapping – some notes

- Input data from LUCAS (and other sources in WoSIS if relevant)
- Covariates:
 - $\circ~$ Data prepared by DLR
 - Data available from Copernicus (DEM, land cover)
 - Geology/parent material (JRC)
 - $\circ~$ Simple radar products from Sentinel1
- Model: quantile random forest (robust approach allowing pixel-based uncertainty assessment)
- Outputs:
 - o Primary soil properties
 - \circ Uncertainty index
 - Other uncertainty measures (to be further developed)

Intermediate products Cross-validation - SOC

Used covariates at the X-Axes:

Groups (x-axes)	Description	0.3
no_dlr	All covariates excluding DLR/SCMaP products	0.0
no_dlr_src	All covariates excluding DLR/SCMaP covariate: Soil Reflectance Composite	0.3
no_dlr_src_mos	All covariates excluding DL/SCMaP covariates using the mosaic of MREF and SRC and SRC itself	0.2

Intermediate products Cross-validation – pH (water)

Used covariates at the X-Axes:

				MEC				RMSE	
Groups (x-axes)	Description	0.6445-		•	•		•		
no_dlr	All covariates excluding DLR/SCMaP products	0.6440- 0.6435-				0.781 -			
no_dlr_src	All covariates excluding DLR/SCMaP covariate: Soil Reflectance Composite	0.6430 - 0.6425 -				0.780-			
no_dlr_src_mos	All covariates excluding DL/SCMaP covariates using the mosaic of	0.6420 -	<u>ط</u> ر.	- Ja		0.779-	dr.	•	• - SO
	IVIKEF AND SKC AND SKC ILSEN		OL OL	no_dlr_s	no_dlr_src_m		оц	no_dlr_s	no_dlr_src_m

Intermediate products

Cross-validation – bulk density (oven dry)

Used covariates at the X-Axes:

				MEC				RMSE	
Groups (x-axes)	Description	0.4975-	•					•	
no_dlr	All covariates excluding DLR/SCMaP products	0.4950-				0.257 -			•
no_dlr_src	All covariates excluding DLR/SCMaP covariate: Soil Reflectance Composite	0.4900 -			•	0.256-			
no_dlr_src_mos	All covariates excluding DL/SCMaP covariates using the mosaic of MREF and SRC and SRC itself	0.4875- 0.4850-	dlr -	• stc-	- som	0.255 -	•dir-	- src	- som
			C	no_dlr	no_dlr_src_		лс	no_dlr	no_dlr_src_

Example Data

France

Mean Surface Reflectance

- Sentinel-2
- L2A reflectance (MAJA processed)
- 2018 2022

Mean Surface Reflectance – Standard deviation

- Sentinel-2
- L2A reflectance (MAJA processed)
- 2018 2022

Bare Soil/Surface Reflectance –

- Sentinel-2
- L2A reflectance (MAJA processed)
- 2018 2022
- PV+IR2
- Regionalised thresholds

Bare Soil/Surface Reflectance – Standard deviation

- Sentinel-2
- L2A reflectance (MAJA processed)
- 2018 2022
- PV+IR2
- Regionalised thresholds

Valid Pixel Count

• Sentinel-2

Paris

• 2018 – 2022

Bare Soil Pixel Count

- Sentinel-2
- 2018 2022
- PV+IR2
- Regionalised thresholds

Bare Soil Frequency [%]

- Sentinel-2
- 2018 2022
- PV+IR2
- Regionalised thresholds

Example France Soil parameter

Soil Organic Carbon Content

- Topsoil 0-30cm
- g/kg*10

Paris

Example France Soil parameter

pH in water

- Topsoil 0-30cm
- pH*10

Example France Soil parameter

Total Nitrogen

- Topsoil 0-30cm
- [g/kg*10]

Example France
Soil
parameter
Bulk density, oven dry

- Topsoil 0-30cm
- [TBD]

Data access

Data policy and web portals

_	CUP4SOIL (EU - FPCUP)
License	CC BY 4.0
Products	 <u>5 Years SCMaP and Soil products (2018 – 2022)</u> Mean + Soil reflectance composites Statistic-Products (Frequency, Valid pixels, etc.) Bare soil mask
	<u>Yearly SCMaP products</u> Soil frequency, Soil count, Valid pixels, Soil mask
	 <u>Soil parameters:</u> SOC, texture, pH, bulk density, etc Associated accuracy / uncertainty
Format	Cloud Optimized GeoTiff (COG) 20 m (Europe)
Web Platform	DLR Geoservice (Browsing, Webservices, Download, STAC) ISRIC Webportal (Browsing, Webservices, Download)

Purpose:

- Provide a set of data products for stakeholders to "play around" and get first experiences
- Development of show cases
- Special emphasis on validation / accuracy / uncertainty of the products (more products in progress)
- Explore the pros and cons of SOC maps from WorldSoils and CUP₄SOIL and other sources (SoilGrids, Holisoils, ...)

Outlook

Summary and future developments

- Summary:
 - DLR and ISRIC partnered to produce:
 - SCMaP intermediate products
 - Soil parameter
 - Test about the beste choise of covariates direct spectral covariates could improve the modelling
 - Data will be published and available
- Future developments:
 - Preparing the webserver
 - Comparison of WorldSoils SOC with CUP4SOIL SOC
 - Validation / Uncertainty by "spatial pattern agreement" ("How well does digital soil mapping represent soil geography")
- Further CUP₄SOIL presentation on:
 - IUSS Centennial May 2024 Heiden et al High resolution soil quality indicators maps for Europe
 - EGU 14–19 April, 2024, Vienna, Austria: Laura Poggio et al.: European high resolution soil quality products
 - IGARSS 7 12 July, 2024, Athens, Greece: Uta Heiden et al.: "High resolution soil products at European scale integrating remote sensing information"

CUP4SOIL - Thank you very much!

Laura.Poggio@wur.nl fenny.vanegmond@wur.nl uta.heiden@dlr.de

